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Abstract

For the simulation of flow around an arbitrarily moving body, an immersed boundary method is developed in a non-
inertial reference frame that is fixed to the body. The Navier–Stokes equation is formulated in a conservative form such
that the force terms due to the rotation and the translational and rotational accelerations are included in the nonlinear
term. In order to satisfy the no-slip condition on the body surface, momentum forcing and mass source/sink are applied
on the body surface or inside the body. The numerical method is based on a finite volume approach on a staggered mesh
together with a fractional-step method. The present numerical method is applied to both the forced motion and fluid–
structure interaction problems. In the latter, we solve fully coupled Navier–Stokes and dynamic equations for the mov-
ing body without introducing any iteration. Four different flow problems are tested and the results are in excellent
agreements with previous numerical and experimental ones.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

One of the important issues in computational fluid dynamics (CFD) is to develop a numerical method
for the simulation of flow around an arbitrarily moving body. However, there are certain difficulties in
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establishing such a numerical method because it should handle both the arbitrary movement and complex
shape of the body. So far, many numerical methods including the unstructured grid method and immersed
boundary method have been applied to a stationary body with complex geometry. Among them, the im-
mersed boundary method has recently received a special attention in the CFD community because it can
handle complex geometries quite easily using the Cartesian or cylindrical grids. In this method, the grids
do not coincide with the body surface and thus the no-slip condition on the immersed body surface is
satisfied by providing momentum forcing inside the body. However, most of the methods developed are
designed for stationary bodies.

For the simulation of flow around a moving body, both the inertial and non-inertial reference frames
have been used. In the former approach, the reference frame is fixed (or moving in a constant speed) in
space, and the mesh is generated at each computational time step [1], or some special techniques without
regenerating grids such as the volume of fluid motion [2] and level set [3] are used in order to capture
the body motion appropriately. In the latter approach, the reference frame is fixed to the moving body,
and the Navier–Stokes and continuity equations are transformed into those in the non-inertial reference
frame [4]. The conventional transformation in the non-inertial reference frame produces source terms in
the momentum equation such as the translational acceleration, Coriolis and centrifugal acceleration terms.
Except the centrifugal acceleration term that may be treated as the gradient of a potential, other terms re-
main in explicit source terms. Accordingly, the momentum equation is not expressed in a conservative
form. The disadvantages of this non-conservative form were reported in Kley [5], who indicated that the
explicit treatment of the Coriolis force may lead to erroneous results in a rotating coordinate system. Bed-
dhu et al. [6] successfully formulated the Navier–Stokes equations in a fully conservative form without the
traditional source terms in the case of a rotating reference frame. Rather unfortunately, the flow problem
considered in this paper was the Ekman boundary layer only and unsteady flow problems were not solved.
Accordingly, this important study has not received much attention so far.

The motion of a moving body can be classified into two types depending on how its velocity is deter-
mined. The first is the forced motion of a moving body, where the translational and rotational velocities
of the body are given in time. The second is such that the velocity of the body is determined by the
fluid–structure interaction from the coupled dynamic equations and Navier–Stokes equations. Convention-
ally, the force coefficients in the dynamic equations are discretized explicitly in time in order to decouple
dynamic equations from the Navier–Stokes equations [7,8]. However, this approach does not fully describe
the effect of interaction between the fluid and the structure, and produces numerical instability in some
cases [9]. An alternative approach is to solve Navier–Stokes and dynamic equations implicitly in time using
an iterative technique at every time step [10,11], although the computational overhead increases.

In the present study, we develop a new immersed boundary method using the conservative form of the
Navier–Strokes and continuity equations in the non-inertial reference frame, in order to solve the flow
around an arbitrarily moving body with complex geometry. We apply our method to both forced motion
and fluid–structure interaction problems. In the latter case, we solve the fully coupled equations without
any iteration. The present method is applied to four different unsteady flow problems (inline oscillation
of a circular cylinder, cross-flow oscillation of a circular cylinder, vortex-induced vibration of a circular cyl-
inder, and freely falling sphere and cube under gravity).
2. Numerical method

2.1. Navier–Stokes equations in the non-inertial reference frame

In immersed boundary methods, the no-slip condition on the immersed boundary (i.e., on the body sur-
face) is satisfied by introducing momentum forcing into the Navier–Stokes equations, because the grids do
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not coincide with the body surface. In our previous paper [12], where stationary body problems were con-
sidered, we introduced momentum forcing f into the Navier–Stokes equation to satisfy the no-slip condition
on the immersed boundary, and mass source/sink q into the continuity equation to satisfy the mass conser-
vation for the numerical cell containing the immersed boundary. In the present study, we apply this
immersed boundary method to moving body problems.

As shown in Fig. 1, momentum forcing f is introduced to the body surface or inside the body depending
on the relative position of grids to the body surface. The forcing points are located in a staggered fashion
like the velocity components defined in a staggered mesh. Mass source/sink q is introduced at the cell center
like the pressure. Note that one may introduce both momentum forcing and mass source/sink into the
whole solid body, in order to get more stable solutions at high Reynolds numbers (see, for example,
Yun et al. [13] for flow over a stationary sphere at Re = 104). In the present study, we apply both momen-
tum forcing and mass source/sink to the whole body for better stability. Since we consider a non-inertial
reference frame fixed to the body, the grids and grid locations for momentum forcing and mass source/sink
do not change in time. Therefore, the procedure of determining f and q for the moving body is essentially
the same as that for the stationary body. The details about how to determine f and q are fully described in
Kim et al. [12] and thus we do not repeat the procedure here. Instead, we describe numerical details asso-
ciated with moving body problems in the framework of immersed boundary method in this paper.

Now, let us consider the governing equations in the non-inertial reference frame. As mentioned earlier,
the conventional formulation in the non-inertial reference frame produces source terms in the momentum
equation. Then, the governing equations in the non-inertial reference frame become
Fig. 1.
lines.
our
ot

� �
r

þr � ðururÞ ¼ �rp þ 1

Re
r2ur �X�X� xr � 2X� ur �

dX
dt

� xr � RT d
2da

dt2
þ f ; ð1Þ

r � ur � q ¼ 0; ð2Þ
where xr and ur are the orthogonal coordinates and corresponding velocity vector in the non-inertial refer-
ence frame, respectively, p is the pressure, X is the angular velocity of the body about the origin of the non-
inertial reference frame, da is the origin of the non-inertial reference frame with respect to the inertial
reference frame xa, Re is the Reynolds number, R is the rotational matrix defined as xa ¼ Rxr þ da and
RT is the transpose of R (see Fig. 2). The rotation by an angle h about an arbitrary axis containing the ori-
gin and having unit length direction n = (nx,ny,nz) is represented by [14]
RðhÞ ¼ IþW sin hþW2ð1� cos hÞ; ð3Þ
Schematic diagram of the present immersed boundary method. The shaded area denotes the solid and the lines denote grid



Fig. 2. Schematic diagram of the inertial and non-inertial reference frames.
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where I is the identity matrix and
W ¼
0 �nz ny
nz 0 �nx
�ny nx 0

2
64

3
75.
Note that RT ¼ R�1. The xa and ua are the orthogonal coordinates and corresponding velocity vector in the
inertial reference frame, respectively. The relation between ua (absolute velocity) and ur (relative velocity) is
ua ¼ Rður þX� xr þ usÞ; ð4Þ

where us ¼ RT dda=dt is the translational velocity of the body in the non-inertial reference frame. The time
derivative term in the non-inertial reference frame in Eq. (1) can be written as
our
ot

� �
r

¼ our
ot

� �
a

þ ðX� xr þ usÞ � rur; ð5Þ
where ( )a is the time derivative in the inertial reference frame. There are four source terms in Eq. (1):
�X · X · xr is the centrifugal force, �2X · ur is the Coriolis force, and �dX/dt · xr and �RTd2da=dt2

are the force terms due to the rotational and translational accelerations of the body, respectively.
As developed in Beddhu et al. [6], the Navier–Stokes equations can be transformed into a conservative

form in the non-inertial reference frame using Eq. (4):
ou

ot

� �
r

þr � ½ðu� vÞuþ uw� ¼ �rp þ 1

Re
r2uþ f ; ð6Þ

r � u� q ¼ 0; ð7Þ
where u ¼ ur þ v ¼ RTua, v = X · xr + us and w = X · xr. Thus, the source terms are now included in the
nonlinear term and the governing equations become fully conservative. Note that f and q in Eqs. (6) and (7)
are not the same as those in Eqs. (1) and (2). We use the same notations here for convenience. We have used
this conservative formulation for all simulations because it has advantages over the non-conservative one
(more discussions on this issue are given in Section 2.3).

A fractional-step method is used to solve Eqs. (6) and (7). In the fractional-step method, a pseudo-
pressure is used to correct the velocity vector such that the continuity equation is satisfied at each
computational time step. We use a second-order semi-implicit time advancement scheme consisting of a
third-order Runge–Kutta (RK3) method for the nonlinear terms and the Crank–Nicolson method for
the linear terms (the overall time accuracy is second order):
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ûk � uk�1

Dt
¼ akLðûkÞ þ akLðuk�1Þ � 2akrpk�1 � ckNðuk�1Þ � qkNðuk�2Þ þ 2akf

k; ð8Þ

r2/k ¼ 1

2akDt
ðr � ûk � qkÞ; ð9Þ

uk ¼ ûk � 2akDtr/k; ð10Þ

pk ¼ pk�1 þ /k � akDt
Re

r2/k; ð11Þ
where L(u) = $2u/Re and N(u) = $ Æ [(u � v)u + uw]. Here, û is the intermediate velocity, / is the pseudo-
pressure, Dt and k are the computational time step and substep�s index, respectively, and ak, ck and qk are
the coefficients of RK3 (a1 = 4/15, c1 = 8/15, q1 = 0; a2 = 1/15, c2 = 5/12, q2 = �17/60; a3 = 1/6, c3 = 3/4
and q3 = �5/12).

The second-order central difference scheme is used for all the spatial derivative terms in a staggered grid
system. For example, in two dimension, N(u) = $ Æ [(u � v)u + uw] is discretized as follows (see Fig. 3):
Nxr ¼
2

Dxri þDxri�1

ux
iþ1

2
;j
� �Xyr

jþ1
2

þ usx

� �� �
ux

iþ1
2
;j
� ux

i�1
2
;j
� �Xyr

jþ1
2

þ usx

� �� �
ux

i�1
2
;j
�Xux

iþ1
2
;j
yr

jþ1
2

þXux
i�1

2
;j
yr

jþ1
2

� �

þ 1

Dyrj
uy

i�1
2
;jþ1

� Xxri þ usy
� �� �

ux
i;jþ1

2

� uy
i�1

2
;j
� Xxri þ usy
� �� �

ux
i;j�1

2

�Xuy
i�1

2
;jþ1

yrjþ1
þXuy

i�1
2
;j
yrj

� �
ð12Þ

Nyr ¼
1

Dxri
ux

iþ1;j�1
2

� �Xyrj þ usx
	 
� �

uy
iþ1

2
;j
� ux

i;j�1
2

� �Xyrj þ usx
	 
� �

uy
i�1

2
;j
þXux

iþ1;j�1
2

xriþ1
�Xux

i;j�1
2

xri

� �

þ 2

Dyrj þDyrj�1

uy
i;jþ1

2

� ðXxr
iþ1

2

þ usy Þ
� �

uy
i;jþ1

2

� uy
i;j�1

2

� Xxr
iþ1

2

þ usy

� �� �
uy

i;j�1
2

þXuy
i;jþ1

2

xr
iþ1

2

�Xuy
i;j�1

2

xr
iþ1

2

� �
.

ð13Þ
Other terms are similarly discretized and extension to three dimension is straightforward. The system of
equations discretized from Eq. (8) is solved using the approximate factorization method (see [15]). The
Fig. 3. Schematic diagram for spatial discretization.
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equations discretized from the Poisson equation (9) by applying the second-order central difference scheme
are solved using a multigrid method [16].

Momentum forcing f k must be determined such that uk satisfies the no-slip condition on the immersed
boundary. Because uk ¼ ûk � 2akDtr/k ¼ ûk þ #ðDt2Þ, f k is determined such that ûk satisfies the no-slip
condition instead of uk, which does not affect the overall second-order temporal accuracy as reported in
Kim et al. [12]. In order to derive the momentum forcing value f k, Eq. (6) is provisionally discretized explic-
itly in time (e.g., RK3 for the nonlinear terms and forward Euler method for linear terms):
2akf
k ¼ Uk � uk�1

Dt
� 2akLðuk�1Þ þ 2akrpk�1 þ ckNðuk�1Þ þ qkNðuk�2Þ; ð14Þ
where Uk is the velocity that we want to obtain at a forcing point by applying momentum forcing. When the
forcing point coincides with the immersed boundary, Uk is equal to the velocity of the body
(vk ¼ Xk � xr þ uks ). In general, however, the forcing point exists inside the body, and thus an interpolation
procedure for the velocity Uk is required. The velocities ~uk at grid points outside the solid but only nearby
the forcing point are provisionally obtained using the same explicit scheme with f = 0 as that in Eq. (14), in
order to determine Uk from ~uk and vk using the linear or bilinear interpolation (see, for example, Fig. 4):
~uk � uk�1

Dt
¼ 2akLðuk�1Þ � 2akrpk�1 � ckNðuk�1Þ � qkNðuk�2Þ. ð15Þ
The interpolation scheme for Uk and the procedure of obtaining qk in Eq. (9) are described in detail in Kim
et al. [12].

The non-dimensional force FN and moment TN exerted on a body by fluid in the non-inertial reference
frame are evaluated as
Fk
N ¼ �

Z
V
f k dV � V

uks � uk�1
s

2akDt
þXk�1 � uk�1

s

� �� �
; ð16Þ

Tk
N ¼ �

Z
V
xr � f k dV � Im

Xk �Xk�1

2akDt

� �
; ð17Þ
where V and Im are the volume and moment of inertia of the body, respectively. Note that the second terms
in the right-hand sides of Eqs. (16) and (17) correspond to the inertial force and moment of the body,
respectively. These force and moment can be easily converted into those (FI and TI) in the inertial reference
frame by multiplying the rotational matrix R:
Fk
I ¼ RkFk

N; ð18Þ
Tk

I ¼ RkTk
N. ð19Þ
Fig. 4. Schematic diagram of the bilinear interpolation scheme.
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2.2. Dynamic equations for the body motion

Three-dimensional motions of a rigid body can be described in terms of six components, X = (us,X)T,
where us andX are the translational and rotational velocities of the body, respectively. When a body under-
goes a forced motion, X is given. However, in the case of fluid–structure interaction, the motion of a body is
not prescribed but determined by dynamic equations. The Newton�s equations of the motion in the non-
inertial reference frame can be written as
M
dus
dt

� �
r

þX� us

� �
¼ FN þ Fe; ð20Þ

Im
dX
dt

� �
r

¼ TN þ Te; ð21Þ
where M is the mass of the body, and Fe and Te are the external force and moment on the body that are not
associated with the fluid motion such as the gravitational force.

Eqs. (20) and (21) are coupled with the Navier–Stokes equations because the force FN and moment TN

acting on the body are determined by the Navier–Stokes equations. In this study, FN and TN in Eqs. (20)
and (21) are integrated in time using the trapezoidal method in order not to lose the full interaction effect
between the fluid and structure, and Fe, Te and X · us are done using RK3:
uks � uk�1
s

Dt
¼ akM

�1ðFk
N þ Fk�1

N Þ þM�1ðckFk�1
e þ qkF

k�2
e Þ � ckX

k�1 � uk�1
s � qkX

k�2 � uk�2
s ; ð22Þ

Xk �Xk�1

Dt
¼ akI

�1
m ðTk

N þ Tk�1
N Þ þ I�1

m ðckTk�1
e þ qkT

k�2
e Þ. ð23Þ
Here, Fk
N and Tk

N are a priori unknown and coupled with uks and Xk (see Eqs. (16) and (17)).
In the following, we show that one can obtain uks and Xk without any iterative procedure in the frame-

work of immersed boundary method. Let us define f* (see, for comparison, Eq. (14)) such that
2akf
� ¼ U� � uk�1

Dt
� 2akLðuk�1Þ þ 2akrpk�1 þ ckNðuk�1Þ þ qkNðuk�2Þ; ð24Þ
where U* is the velocity at a forcing point interpolated from the body velocity at k � 1 (vk�1 ¼
Xk�1 � xr þ uk�1

s ) and the provisional neighboring velocities ~uk (Eq. (15)). Then, from Eqs. (14) and (24),
one obtains
Z

V
ðf k � f �Þ dV ¼

Z
V

Uk �U�

2akDt
dV . ð25Þ
Since Uk is obtained from vk (=Xk � xr þ uks ) and the same neighboring velocities ~uk using linear or bilinear
interpolations (see Eqs. (10) and (11) in [12]), Uk � U* depends linearly on uks � uk�1

s and Xk � Xk�1 (or
Xk � Xk�1) and also does on the interpolation method used. Therefore, the right-hand side of Eq. (25)
can be expressed as �AðXk � Xk�1Þ=Dt, where A is a 3 · 6 matrix and its components are determined
by the grid distribution. Then, the force in Eq. (16) becomes
Fk
N ¼ �

Z
V
ðf k � f �Þ dV �

Z
V
f � dV þ V

uks � uk�1
s

2akDt
þXk�1 � uk�1

s

� �

¼ 1

Dt
AðXk � Xk�1Þ þ V

uks � uk�1
s

2akDt
�
Z
V
f � dV þ V ðXk�1 � uk�1

s Þ

¼ 1

Dt
CðXk � Xk�1Þ �

Z
V
f � dV þ V ðXk�1 � uk�1

s Þ; ð26Þ
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where C ¼ Aþ 1
2ak

½V I 0� and I is the 3 · 3 identity matrix. Likewise, the moment in Eq. (17) can be
obtained by introducing a matrix B that satisfies

R
V xr � ðf k � f �Þ dV ¼ �BðXk � Xk�1Þ=Dt:
Tk
N ¼ �

Z
V
xr � ðf k � f �Þ dV �

Z
V
xr � f � dV þ Im

Xk �Xk�1

2akDt

¼ 1

Dt
BðXk � Xk�1Þ þ Im

Xk �Xk�1

2akDt
�
Z
V
xr � f � dV ¼ 1

Dt
DðXk � Xk�1Þ �

Z
V
xr � f � dV ; ð27Þ
where B and D (¼ Bþ 1
2ak

½0 Im�) are 3 · 6 matrices and depend only on the grid distribution. Note that the
matrices, A to D, are calculated only once before the time marching.

Substituting Eqs. (26) and (27) into Eqs. (22) and (23), the Newton�s equations become the following
system of six linear equations:
Xk � Xk�1

Dt
¼ 1

Dt
KEðXk � Xk�1Þ þKP þQ; ð28Þ
where
K ¼ akM
�1 0

0 akI
�1
m

" #
; E ¼

C

D

� �
;

P ¼
�
R
V f

� dV þ V ðXk�1 � uk�1
s Þ þ Fk�1

N

�
R
V xr � f � dV þ Tk�1

N

" #
;

Q ¼ ckM
�1Fk�1

e þ qkM
�1Fk�2

e � ckX
k�1 � uk�1

s � qkX
k�2 � uk�2

s

ckI
�1
m Tk�1

e þ qkI
�1
m Tk�2

e

" #
.

Therefore, Xk can be obtained from the following equation without any iteration:
Xk ¼
uks
Xk

� �
¼ Xk�1 þ DtðI�KEÞ�1ðKP þQÞ. ð29Þ
With uks and Xk (and thus vk obtained), we solve Eqs. (8)–(11) to get uk and pk.

2.3. Conservative form vs. non-conservative form

As shown in Section 2.1, the Navier–stokes equations in the non-inertial reference frame can be repre-
sented in the conservative and non-conservative forms (Eqs. (1) and (6), respectively). In this section, we
provide a numerical example showing that the first is superior to the latter in terms of the numerical sta-
bility. For this purpose, we consider a rotational oscillation of a circular cylinder in a static fluid that is
solved, respectively, in the inertial reference frame, non-inertial reference frame with conservative form,
and non-inertial reference frame with non-conservative form.

A rotational motion of a cylinder is given by a harmonic oscillation:
xcðtÞ ¼ Am sinð2pftÞ; ð30Þ
where xc is the angular velocity of the cylinder, and Am and f are the amplitude and frequency of the oscil-
lation, respectively. The Reynolds number is defined as Re = Umd/m, where Um = Amd/2, d is the cylinder
diameter and m is the kinematic viscosity. The computations are performed at Re = 300 and f = 0.1. In the
case of inertial reference frame, the reference frame is fixed in space and the cylinder rotates with respect to
the grids. On the other hand, for the non-inertial reference frame, the reference frame is fixed to the cylinder
and rotates with its motion. The size of the computational domain used is �50d < xr < 50d and
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�50d < yr < 50d. Dirichlet boundary conditions are used for all outer boundaries as follows: for the inertial
reference frame,
Fig. 5.
frame;

Fig. 6.
(b) no
ua ¼ 0; ð31Þ

for the non-inertial reference frame with conservative form,
u ¼ RTua ¼ 0; ð32Þ

and for the non-inertial reference frame with non-conservative form (see Eq. (4)),
ur ¼ �X� xr. ð33Þ
Time histories of the torque coefficient for flow around a rotationally oscillating cylinder at Re = 300: 3, inertial reference
j, non-inertial reference frame with conservative form and n, non-inertial reference frame with non-conservative form.

Contours of the instantaneous pressure for flow around a rotationally oscillating cylinder at Re = 300: (a) conservative form;
n-conservative form. Contour levels are from �3 to 3 for (a) and from �3000 to 3000 for (b).
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Note that, in the case of non-conservative form, the velocity at the outer boundary increases with increasing
computational domain size.

Fig. 5 shows the time histories of the torque coefficient, CT ¼ T =ð0.5qU 2
mdÞ, obtained from three differ-

ent methods, where T is the torque and q is the density. As is clear, the three results are identical. However,
the solution eventually blows up in the case of non-conservative form due to numerical instability generated
from the outer boundary condition. Fig. 6 shows the pressure contours at tUm/d = 100 for the cases of
conservative and non-conservative forms. A fictitious pressure field is generated from the outer boundary
for the case of non-conservative form. This numerical instability is caused by the large velocity prescribed at
the outer boundary, ur = �X · xr. Moreover, the computational time step becomes severely restricted in
the case of non-conservative form because of large ur at the outer boundary. On the other hand, the con-
servative form (6) does not have such a problem because the dependent variable u is simply RTua and the
equation is fully conservative.
3. Numerical examples of forced motion problems

Two different unsteady flow problems are considered to show that the present numerical method accu-
rately predicts flow induced by unsteady forced motion of a solid body. A Cartesian coordinate system in a
non-inertial reference frame is applied to both test problems.

3.1. Inline oscillation of a circular cylinder

A periodic oscillation of a circular cylinder in fluid at rest is considered. There exist two non-dimensional
parameters that characterize the flow induced by the motion of the cylinder. One is the Reynolds number
defined as Re = Umd/m, where Um is the maximum velocity of the cylinder during oscillation, d is the cyl-
inder diameter, and m is the kinematic viscosity. The other is the Keulegan–Carpenter number, KC = Um/fd,
where f is the frequency of the oscillation.

The translational motion of the cylinder is given by a harmonic oscillation:
xcðtÞ ¼ �Am sinð2pftÞ; ð34Þ

where xc is the location of the cylinder center and Am is the amplitude of the oscillation. Hence, the Keul-
egan–Carpenter number is KC = 2pAm/d. The computation is performed at Re = 100 and KC = 5 at which
the experimental and numerical results by Dütsch et al. [17] are available. The origin of the moving coor-
dinates coincides with the center of the cylinder. The numbers of grid points are 353 · 193 in the oscillatory
Fig. 7. Grid distribution near the cylinder for simulation of flow caused by its inline oscillation.
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(xr) and transverse (yr) directions, respectively, and 30 · 30 grid points are uniformly distributed inside the
cylinder (Fig. 7). The size of the computational domain used is �50d < xr < 50d and �50d < yr < 50d, and
the Neumann boundary conditions (oui/onj = 0) are used for all outer boundaries, where nj is the vector
normal to the outer boundary surface.

Fig. 8 shows the time history of the drag coefficient in the oscillatory direction, together with the numer-
ical result of Dütsch et al. [17]. It is clear that the drag obtained from the present study agrees very well with
that of Dütsch et al. [17]. Fig. 9 shows the profiles of the velocity component (ua) along the ya-axis at
xa = �0.6d for three different phase positions, together with the experimental and numerical results of
Dütsch et al. [17], where xa and ya are the oscillatory and transverse directions in the inertial reference
frame, respectively. Again, the velocity profiles agree very well with the numerical and experimental results
of Dütsch et al. [17]. The contours of the vorticity in the inertial reference frame for four different phase
positions are shown in Fig. 10, where the vortex formation is characterized by two counter-rotating vortices
Fig. 8. Time history of the drag coefficient at Re = 100 and KC = 5: 3, present study; –––, Dütsch et al. [17].

a b c

Fig. 9. Profiles of the velocity component (ua) in the oscillatory direction (in the inertial reference frame) along the ya-axis at
xa = �0.6d for three different phase positions (/ = 2pft): (a) / = 180�; (b) / = 210� and (c) / = 330�. 3, Present study; –––,
numerical result of Dütsch et al. [17]; j, experimental result of Dütsch et al. [17].
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Fig. 10. Time sequence of the spanwise vorticity in the inertial reference frame: (a) / = 0�; (b) 96�; (c) 192� and (d) 288�. The contour
levels are xzd/Um = �8.5 to 8.5 by increments of 0.85.
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during the oscillation of the cylinder. This vortical structure is the same as that shown in Dütsch et al. [17],
indicating that the present method accurately describes the vorticity field.

3.2. Transverse oscillation of a circular cylinder in a free-stream

In this section, we simulate the flow induced by a transverse oscillation of a circular cylinder in a free-
stream. The Reynolds number is based on the free-stream velocity u1 and the cylinder diameter d. The
transverse motion of the cylinder is given by a harmonic oscillation:
Fig. 11
coeffici
vertica
ycðtÞ ¼ Am cosð2pfetÞ; ð35Þ

where yc is the location of the cylinder center, Am is the amplitude of the oscillation, and fe is the oscillation
frequency. The computation is performed at Re = 185, Am/d = 0.2 and 0.8 6 fe/fo 6 1.2 as in Guilmineau
and Queutey [18], where fo is the natural shedding frequency for a stationary cylinder. The numbers of grid
points are 353 · 193 in the streamwise (xr) and transverse (yr) directions, respectively, and 30 · 30 grid
a b

. Variations of the force coefficients and phase angle with respect to fe/fo (in the inertial reference frame): (a) mean drag
ent (CD) and rms drag and lift fluctuation coefficients (CDrms and CLrms, respectively); (b) phase angle between CL and the
l position of the cylinder. –d–, Present study; –h–, Guilmineau and Queutey [18].
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points are uniformly distributed inside the cylinder. The grid distribution is similar to that shown in Fig. 7.
The size of the computational domain used is �50d < xr < 50d and �50d < yr < 50d. A Dirichlet boundary
condition (u/u1 = 1, v = 0) is used at the inflow, Neumann boundary conditions (oui/oyr = 0) are used at
farfield boundaries, and the convective boundary condition (oui/ot + coui/oxr = 0) is used at the outflow
boundary, where c is the space-averaged streamwise velocity there.

Fig. 11(a) shows the variations of the mean drag and rms drag and lift fluctuation coefficients with re-
spect to fe/fo. The phase angle between the lift coefficient and the vertical position of the cylinder is shown in
Fig. 11(b). As shown, the present results agree very well with those of Guilmineau and Queutey [18]. Fig. 12
shows the vorticity contours when the oscillating cylinder locates at the extreme upper position. The vor-
ticity pattern around the cylinder changes significantly between fe/fo = 1.0 and 1.1, which is the same as that
observed by Guilmineau and Queutey [18].
4. Numerical examples of fluid–structure interaction problems

Two different unsteady flow problems are solved to show that the present method accurately describes
the interaction between the fluid and the structure. A Cartesian coordinate system in a non-inertial refer-
ence frame is applied to both test problems.

4.1. Vortex-induced vibration of a circular cylinder

Flow-induced vibrations caused by vortex shedding from a structure is one of the representative fluid–
structure interaction problems. Thus, we examine the vortex-induced vibration on an elastically mounted
circular cylinder as a test problem of fluid–structure interaction. The motion of a circular cylinder is con-
strained only to a translational motion in x and y directions (i.e., no rotational motion is allowed), as was
done in [19]. The Reynolds number is fixed at Re = 200 based on the free-stream velocity u1 and the cyl-
inder diameter d. The non-dimensionalized governing equations for the motion of an elastically mounted
cylinder in the inertial reference frame are
€xa þ 4npSt
fn
fo

_xa þ 2pSt
fn
fo

� �2

xa ¼
F x

n
; ð36Þ

€ya þ 4npSt
fn
fo

_ya þ 2pSt
fn
fo

� �2

ya ¼
F y

n
; ð37Þ
where n is the damping factor, fo is the vortex shedding frequency of a fixed cylinder (St = fod/u1), fn is the
natural frequency of the spring-damper-mass system, n is the mass ratio of solid to fluid, and Fx and Fy are
the non-dimensional forces exerted on the cylinder in x and y directions, respectively. Here, FN = (Fx,Fy) is
obtained from Eq. (26) together with Eqs. (29) and (24). Then, Eqs. (36) and (37) are solved using the trap-
ezoidal method after converting them into a system of first-order ordinary differential equations.

The values of mass ratio n and damping factor n are 10 and 0.01, respectively, as in Blackburn and Hen-
derson [19]. In order to examine the lock-in region and associated phenomena, computations are performed
at the range of 0.75 6 fn/fo 6 1.35.

The numbers of grid points are 321 · 193 in the streamwise (xr) and transverse (yr) directions, respec-
tively, and 30 · 30 grid points are uniformly distributed inside the cylinder. The size of the computational
domain is �20d < xr < 50d and �50d < yr < 50d. A Dirichlet boundary condition (u/u1 = 1, v = 0) is used
at the inflow, Neumann boundary conditions (oui/oyr = 0) are used at farfield boundaries, and the convec-
tive boundary condition (o ui/ot + coui/oxr = 0) is used at the outflow boundary, where c is the space-
averaged streamwise velocity there.
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Fig. 12. Vorticity contours at the extreme upper position of the oscillating cylinder (in the inertial reference frame): (a) fe/fo = 0.9;
(b) 1.0; (c) 1.1; (d) 1.2. The contour levels are xzd/u1 = �8 to 8 by increments of 1.
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Fig. 13 shows the variations of oscillation frequency ðf 0
nÞ, mean drag and rms lift fluctuation coefficients

(CD and CLrms), and rms transverse displacement (yrms) of the cylinder with respect to fn/fo. As shown in
Fig. 13, the oscillation frequency f 0

n is equal to fn near fn = fo. This phenomenon is called lock-in, and the a
amplitude of the transverse displacement increases considerably during lock-in. Outside this lock-in range,
f 0
n is almost same as fo. The lock-in range, oscillation amplitude, drag and lift coefficients are nearly the
same as those of Blackburn and Henderson [19].

Fig. 14 shows the vorticity contours when the cylinder is at the extreme upper position. In the non-
lock-in region (fn/fo = 0.75 and 1.35), the vortex pattern around the cylinder is similar to that of the fixed
cylinder, whereas it is very different in the lock-in region (fn/fo = 1.0).
Fig. 13. Cylinder response diagram: f 0
n, oscillation frequency of the cylinder; CLrms, rms lift fluctuation coefficient; CLOrms, rms lift

fluctuation coefficient for the fixed cylinder; CD, mean drag coefficient; CDO, mean drag coefficient for the fixed cylinder; yrms, rms
transverse displacement of the cylinder. m, j, d, ., Present study; n, h, s, ,, Blackburn and Henderson [19]. The line in this figure
corresponds to f 0

n ¼ fn.
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Fig. 14. Vorticity contours at the extreme upper position of the elastically mounted cylinder (in the inertial reference frame):
(a) fn/fo = 0.75; (b) 1.0 and (c) 1.35.
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4.2. Freely falling object under gravity

As the last flow problems, we consider freely falling sphere and cube under gravity, respectively. Unlike
the vortex-induced vibration of a circular cylinder considered in the previous section, the object is not elas-
tically mounted but it falls owing to the gravity. Thus, the motion of the body is governed by the Newton
equation. The acceleration of the body by the gravity is (qs/qf � 1)g, where g is the gravitational accelera-
tion, qs and qf are the densities of the sphere (or cube) and fluid, respectively. The Reynolds number is
defined as
Reg ¼
ðjðqs=qfÞ � 1jgÞ1=2d3=2

m
; ð38Þ
where uc = (|(qs/qf) � 1|gd)1/2 is the characteristic velocity and d is the diameter of the sphere or the height
of the cube.

For the present problem (see Eqs. (20) and (21)), M ¼ pqsI=ð6qfÞ, Im ¼ pqsI=ð60qfÞ for the sphere and
M ¼ qsI=qf , Im ¼ qsI=ð6qfÞ for the cube, and Te = 0. Thus, Eqs. (20) and (21) in the non-inertial reference
frame become
dus
dt

þX� us ¼ M�1 FN þMRT sgn
qs

qf

� 1

� �
g

jgj

� �
; ð39Þ

dX
dt

¼ I�1
m TN. ð40Þ
Here, us andX are the translational and rotational velocities of the body in the non-inertial reference frame,
respectively, and determined by solving Eq. (28). FN and TN are the non-dimensional force and moment
exerted on the body by fluid in the non-inertial reference frame, respectively.

For the case of sphere, we consider two different cases as considered in Mordant and Pinton [20]: the first
is qs/qf = 2.57 and Reg = 48.5, and the second is qs/qf = 7.86 and Reg = 287. The computational domain is
�30d 6 xr 6 30d, �30d 6 yr 6 30d and �30d 6 zr 6 30d. The numbers of grid points are
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129(xr) · 129(yr) · 129(zr), and 30 · 30 · 30 grid points are uniformly distributed inside the sphere.
Neumann boundary conditions (oui/onj = 0) are used for all outer boundaries, where nj is the vector normal
to the outer boundary surface. On the other hand, for the case of cube, we consider the case of qs/qf = 7.86
and Reg = 208 such that the cube has the same volume of the sphere at Reg = 287. Other computational
parameters are the same as those for the sphere case.

Fig. 15 shows the temporal evolution of the velocity of the sphere in the gravitational direction at
Reg = 48.5 and 287, together with the experimental results of Mordant and Pinton [20]. For Reg = 48.5,
a b

Fig. 15. Temporal evolution of the velocity of the sphere in the gravitational direction (in the inertial reference frame): (a) Reg = 48.5;
(b) Reg = 287. 3, Present study; j, Mordant et al. [20].

Fig. 16. Instantaneous vortical structures at Reg = 287: (a) tuc/d = 335.4; (b) 352.5 and (c) 366.2.
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the sphere accelerates monotonically and reaches a terminal velocity in a finite time as shown in Fig. 15(a).
Other velocity components and rotation of the sphere remain zero. The Reynolds number based on this
terminal velocity and the sphere diameter is about 42, at which flow over a stationary sphere is steady axi-
symmetric. For Reg = 287, however, the velocity of the sphere oscillates after reaching its maximum value.
On the other hand, this oscillation was not observed by Mordant and Pinton [20], possibly because the
sphere motion was ensemble averaged from 10 experiments and it was not possible to measure these small
oscillations experimentally as reported in Mordand and Pinton [20]. The Reynolds number based on the
terminal velocity for Reg = 287 is about 430, at which the fixed sphere shows unsteady asymmetric flow
[21,22]. That is, vortex shedding behind the sphere loses the planar and axi-symmetry and the shedding
Fig. 17. Temporal evolutions of the velocity in the gravitational direction for the cases of sphere and cube: 3, sphere (Reg = 287);
–––, cube (Reg = 208).

Fig. 18. Instantaneous vortical structures at Reg = 208: (a) tuc/d = 114.0; (b) 125.1 and (c) 148.2.
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direction changes irregularly. Fig. 16 shows the vortical structures at three different instants for Reg = 287
using the vortex-identification method of Jeong and Hussain [23]. It is clear that the direction of vortex
loops changes in time.

Fig. 17 shows the temporal evolutions of the velocity in the cases of cube and sphere, respectively, at
Reg = 208 and Reg = 287. The terminal velocity of cube is higher than that of sphere because the cross-
sectional area of cube is smaller than that of sphere when both volumes are set to be equal. For the
grid-independent solution, we doubled the grids but obtained the same results. Fig. 18 shows the vortical
structures at three different instants for Reg = 208 using the vortex-identification method of Jeong and
Hussain [23]. The direction of vortex loops changes in time because of the rotation of cube (the rotation
of cube is manifest in Fig. 18).
5. Conclusions

In the present study, we developed an immersed boundary method in a non-inertial reference frame in
order to simulate flow around an arbitrarily moving body in an infinite domain, including forced motion
and fluid–structure interaction problems. The present method is based on the previous immersed boundary
method by Kim et al. [12] designed for flow over a stationary body. The governing equations in the non-
inertial reference frame are formulated in a strongly conservative form that provides a good numerical sta-
bility (see also [6]). For the fluid–structure interaction problems, fully coupled Navier–Stokes and dynamic
equations are solved without any iteration per time step.

In the case of forced motion, inline and cross-flow oscillations of a circular cylinder, respectively, were
simulated using the present numerical method. For fluid–structure interaction problems, vortex-induced
vibration of a circular cylinder, and freely falling sphere and cube under gravity were examined. All the flow
problems considered produced excellent agreements with the previous numerical and experimental results,
indicating the applicability and accuracy of the present immersed boundary method for flow around an
arbitrarily moving body.
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